Package: didec 0.1.0

didec: Directed Dependence Coefficient

Directed Dependence Coefficient (didec) is a measure of directed dependence. Multivariate Feature Ordering by Conditional Independence (MFOCI) is a variable selection algorithm based on didec. Hierarchical Variable Clustering (VarClustPartition) is a variable clustering method based on didec. For more information, see the paper by Ansari and Fuchs (2024, <doi:10.48550/arXiv.2212.01621>), and the paper by Fuchs and Wang (2024, <doi:10.1016/j.ijar.2024.109185>).

Authors:Yuping Wang [aut, cre], Sebastian Fuchs [aut], Jonathan Ansari [aut]

didec_0.1.0.tar.gz
didec_0.1.0.zip(r-4.5)didec_0.1.0.zip(r-4.4)didec_0.1.0.zip(r-4.3)
didec_0.1.0.tgz(r-4.4-any)didec_0.1.0.tgz(r-4.3-any)
didec_0.1.0.tar.gz(r-4.5-noble)didec_0.1.0.tar.gz(r-4.4-noble)
didec_0.1.0.tgz(r-4.4-emscripten)didec_0.1.0.tgz(r-4.3-emscripten)
didec.pdf |didec.html
didec/json (API)

# Install 'didec' in R:
install.packages('didec', repos = c('https://yupingwang7.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 4 scripts 137 downloads 3 exports 126 dependencies

Last updated 3 months agofrom:d5e1b726c2. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-winOKNov 03 2024
R-4.5-linuxOKNov 03 2024
R-4.4-winOKNov 03 2024
R-4.4-macOKNov 03 2024
R-4.3-winOKNov 03 2024
R-4.3-macOKNov 03 2024

Exports:didecmfociVarClustPartition

Dependencies:abindapebackportsbase64encbootbroombslibcachemcarcarDatacliclustercolorspacecopBasiccorrplotcowplotcpp11crosstalkdata.tabledendextendDerivdigestdoBydplyrDTellipseemmeansestimabilityevaluatefactoextraFactoMineRfansifarverfastmapflashClustFOCIfontawesomeFormulafsgenericsggplot2ggpubrggrepelggsciggsignifgluegmpgoftestgridExtragtablegtoolshighrhtmltoolshtmlwidgetshttpuvisobandjquerylibjsonliteknitrlabelinglaterlatticelazyevalleapslifecyclelme4lmomcoLmomentsmagrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmultcompViewmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestphylogrampillarpkgconfigplyrpolynompromisesproxypurrrquantregR6randtoolboxRANNrappdirsRColorBrewerRcppRcppArmadilloRcppEigenreshape2rlangrmarkdownrngWELLrstatixsassscalesscatterplot3dSparseMstringistringrsurvivaltibbletidyrtidyselecttinytexutf8vctrsviridisviridisLitewithrxfunyaml